-->

Relations And Functions

Question
CBSEENMA12035999

Show that the height of a closed right circular cylinder of given surface and maximum volume, is equal to the diameter of its base.

Solution

let  r  and   h   be the  radius and height of the cylinder. Then,

                             

A = 2 π r h + 2 π r2    ( Given ) h = A -  2 π r22 π r Now,  Volume  ( V ) = π r2 h  V = π r2  A -  2 π r22 π r   = 12 A r -  2 π r3 dvdr = 12 A - 6 π r2             ..............( i ) d2vdr2 = 12  - 12 π r             ..............( i )   

Now, dVdr = 0    12 A - 6 π r2  = 0 r2 = A6 π    r =  A6 πNow,   d2Vdr2  r =  A6 π  = 12  - 12 π   A6 π    < 0Therefore,  Volume is maximum at  r =   A6 π

 r2 = A6 π  6 π r2  = A  6 π r2  = 2 π r h + 2 π r2 4 π r2 = 2 π r h    2 r = h

Hence, the volume is maximum if its height is equal to its diameter.

Some More Questions From Relations and Functions Chapter