NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Vector Algebra
Prove that ∫0π4 tan x + cot x dx = 2. π2
∫0π4 tan x + cot x dx = ∫0π4 sin x cos x + cos xsin x dx= ∫0π4 sin x + cos xsin x cos x dx= 2 ∫0π4 sin x + cos x2 sin x cos x dx= 2 ∫0π4 sin x + cos x1 - sin x - cos x2 dxPut sin x - cos x = t ⇒ ( cos x + sin x ) dx = dt
If x = 0, t = 0 - 1 = - 1
and if x = π4, t = 12 - 12 = 0∴ ∫0π4 tan x + cot x dx = 2 ∫- 10 dt 1 - t2 = 2 sin- 1 t -10 = 2 sin- 1 0 - sin- 1 - 1 = 2 0 + π2 = 2 × π2.
Mock Test Series