-->

Vector Algebra

Question
CBSEENMA12035997

Prove that  0π4  tan x +  cot x  dx = 2. π2

Solution

0π4  tan x +  cot x  dx = 0π4    sin x cos x  +  cos xsin x   dx= 0π4   sin x + cos xsin x cos x    dx=  2 0π4   sin x + cos x2 sin x cos x    dx=  2 0π4   sin x + cos x1 -  sin x - cos x2   dxPut  sin x - cos x =  t   ( cos x + sin x ) dx = dt

 

If  x = 0,  t = 0 - 1 = - 1

 

and if  x = π4,   t = 12 - 12 = 0 0π4  tan x +  cot x  dx =  2 - 10 dt 1 - t2                                                  =  2   sin- 1 t -10                                                  =  2   sin- 1 0 - sin- 1   - 1                                                    =   2   0 + π2                                                   =  2 × π2.

Some More Questions From Vector Algebra Chapter