-->

Vector Algebra

Question
CBSEENMA12035996

Find the equation of the plane determined by the point A( 3, - 1, 2 ), B( 5, 2, 4 ) and C( -1, -1, 6 ) and hence find the distance between the plane and the point P( 6, 5, 9 ).

Solution

We know that, equation of a plane passing through  3  points,

  x - x1    y - y1     z - z1 x2 - x1     y2 - y1      z2 - z1x3 - x1    y3 - y1      z3 - z1    =  0    x - 3       y + 1      z - 22         3    2- 4             0    4    =  0  ( x - 3 ) ( 12 - 0 ) - ( y + 1 ) ( 8 + 8 ) + ( z - 2 ) ( 0 + 12 ) = 0 12 x - 36 - 16 y - 16 + 12 z - 24 = 0 12 x - 16 y + 12 z - 76 = 0 3 x - 4 y + 3 z - 19 = 0

Also, perpendicular distance of  P ( 6, 5, 9 )  to the plane  3 x - 4 y + 3 z - 19 = 0

=  3 × 6 - 4 × 5 + 3 × 9 - 19  9 + 16 + 9= 634 units

Some More Questions From Vector Algebra Chapter