NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Relations And Functions
If y = 3 cos ( log x ) + 4 sin ( log x ), show that
x2 d2ydx2 + x dydx + y = 0
It is given that, y = 3 cos ( log x ) + 4 sin ( log x )
Then,
dydx = 3 × ddx cos log x + 4 × ddx sin log x = 3 × - sin log x × ddx log x + 4 × cos log x × ddx log x = - 3 sin log xx + 4 cos log xx = 4 cos log x - 3 sin log xxd2ydx2 = ddx 4 cos ( log x ) - 3 sin ( log x )x
= x 4 cos ( log x ) - 3 sin ( log x ) ' - 4 cos ( log x ) - 3 sin ( log x ) x 'x2= x - 4 sin ( log x ) × ( log x )' - 3 cos ( log x ) × ( log x )' - 4 cos ( log x ) + 3 sin ( log x ) x2= - 4 sin ( log x ) - 3 cos ( log x ) - 4 cos ( log x ) + 3 sin ( log x ) x2= - sin ( log x ) - 7 cos ( log x )x2∴ x2 d2ydx2 + x dydx + y
= x2 - sin ( log x ) - 7 cos ( log x ) x2 + x 4 cos ( log x ) - 3 sin ( log x ) x + 3 cos ( log x ) + 4 sin ( log x )= - sin ( log x ) - 7 cos ( log x ) + 4 cos ( log x ) - 3 sin ( log x ) + 3 cos ( log x ) + 4 sin ( log x )= 0
Hence proved.
Mock Test Series