-->

Relations And Functions

Question
CBSEENMA12035985

Find the point on the curve  y = x3 – 11x + 5  at which the equation of tangent is  y = x – 11.

Solution

The equation of the given curve is  y = x3 - 11 x + 5.

The equation of the tangent to the given curve is given as  y = x - 11  ( Which is of the form  y = m x + c ).

  Slope of the tangent  =  1

Now, the slope of the tangent to the given curve at the point  ( x, y ) is

given by,

dydx = 3 x2 - 11

Then,  we have:

3 x2 - 11 = 1

 3 x2 = 12 x2 = 4 x =± 2

When  x = 2,   y = ( 2 )3 - 11 ( 2 ) + 5

                        = 8 - 22 + 5

                        = - 9.

When  x = - 2,   y = ( - 2 )3 - 11 ( - 2 ) + 5

                           = - 8 + 22 + 5

                           = 19.

Hence, the required points are ( 2, - 9 )   and    ( - 2, 19 ).

Some More Questions From Relations and Functions Chapter