NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Relations And Functions
Prove that sin- 1 817 + sin- 1 35 = cos- 1 3685 .
Let sin- 1 817 = x.Then, sin x =817; cos x = 1 - x2 ⇒ cos x = 1 - 817 2⇒ cos x = 225289⇒ cos x = 1517
∴ tan x = sin xcos x⇒ tan x = 8171517⇒ tan x = 815⇒ = x = tan- 1 815 ...........( i )Let sin- 1 35 = y ...........( ii )Then, sin y = 35; cos y = 1 - y2
⇒ cos y = 1 -352 ⇒ cos y = 1625 ⇒ cos y = 45∴ tan y = sin ycos y⇒ tan y = 3545⇒ tan y = 34⇒ y = tan- 1 34 ...............( iii )
From equation ( ii ) and ( iii ), we have,
sin- 1 35 = tan- 1 34 Now consider sin- 1 817 + sin- 1 35 :
From equation ( i ) and ( iii ), we have,
sin- 1 817 + sin- 1 35 = tan- 1 815 + tan- 1 34 = tan- 1 815 + 341 - 815 ×34 ....... ∵ tan- 1 x + tan- 1 y = tan- 1 x + y1 - xy = tan- 1 32 + 4560 - 24 sin- 1 817 + sin- 1 35 = tan- 1 7736 ........( iv )
Now, we have:
Let tan- 1 7736 = z.Then tan z = 7736⇒ sec z = 1 + 77362 ....... ∵ sec θ = 1 + tan2 θ ⇒ sec z = 1296 + 59291296⇒ sec z = 72251296⇒ sec z = 8536
We know that cos z = 1sec zThus, sec z = 8536, cos z = 3685⇒ z = cos- 1 3685 ⇒ tan- 1 7736 = cos- 1 3685⇒ sin- 1 817 + sin- 1 35 = cos- 1 3685 .......[ ∵ From equation ( iv ) ]
Hence proved.
Mock Test Series