-->

Three Dimensional Geometry

Question
CBSEENMA12035964

Find the equation of the plane which contains the line of intersection of the planes 

r.  i^ + 2 j^ + 3 k  - 4 = 0,     r.  2 i^ + j^  - k  + 5 = 0  and which is perpendicular to

the plane  r.  5 i^ + 3 j^  - 6 k  + 8 = 0.

Solution

The equations of the given planes are

r.  i^ + 2 j^ + 3 k  - 4 = 0              ..............( i )r.  2 i^ +  j^  - k   + 5 = 0             ...............( ii )

The equation of the plane passing through the line of intersection of the given

planes is 

 r.  i^ + 2 j^ + 3 k  - 4  + λ  r.  2 i^ +  j^  -  k   + 5 = 0r.   1 + 2 λ  i^ + 2 + λ  j^  +  3 -  λ  k  +  - 4 + 5 λ  = 0           .........( iii )The plane in equation ( iii ) is perpendicular to the plane,   r.  5 i^ + 3 j^  - 6 k  + 8 = 0 5  1 + 2 λ  + 3  2 + λ  - 6  3 -  λ  = 0 5 + 10 λ + 6 + 3 λ - 18 + 6 λ = 0 19 λ - 7 = 0 λ = 719Substituting   λ = 719  in equation  ( iii ), 

r.  3319 i^ + 4519 j^ + 5019 k  - 4119 = 0 r.  33 i^ + 45 j^ + 50 k  - 41 = 0

This is the vector equation of the required plane.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.