NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Integrals
Evaluate: ∫0π2 x sin x cos xsin4 x + cos4 x dx
I = ∫0π2 x sin x cos xsin4 x + cos4 x dx ............( i )Using the property ∫0a f ( x ) dx = ∫0a f ( a- x ) dxI = ∫0π2 π2 - x sin π2 - x cos π2 - x sin4 π2 - x + cos4 π2 - x dx⇒ I = ∫0π2 π2 - x cos x sin x sin4 x + cos4 x dx .............( ii )
Adding ( i ) and ( ii ),
2 I = ∫0π2 π2 . sin x cos x sin4 x + cos4 x dx⇒ I = π4 ∫0π2 sin x cos x sin4 x + cos4 x dx= π4 ∫0π2 sin x cos xcos4 x sin4 x cos4 x + 1 dx= π4 ∫0π2 tan x sec2 xtan4 x + 1 dx
Put tan2 x = z
∴ 2 tan x sec2 x dx = dz
⇒ tan x sec2 x dx = dz2When x = 0, z = 0 and when x = π2, z = ∞∴ I = π4 ∫0∞ dz2z2 + 1⇒ I = π8 ∫0∞ dz1+ z2 = π8 tan-1 z 0∞ = π8 tan-1 ∞ - tan-1 0 = π8 π2 - 0 = π216
Mock Test Series