NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Integrals
Evaluate: ∫0π2 2 sin x cos x tan-1 sin x dx
Consider the given integral
I = ∫0π2 2 sin x cos x tan-1 sin x dxLet t = sin x⇒ dt = cos x dxWhen x = π2, t = 1When x= 0, t = 0Now, ∫ 2 sin x cos x tan-1 sin x dx= ∫ 2 t tan-1 t dt
= tan-1 t ∫ 2 t dt - ∫ ddt . tan-1 ∫ 2 t dt dt= tan-1 t 2 . t22 - ∫ 11 + t2 x 2. t22 dt= t2 tan-1 t - ∫ t21 + t2 dt= t2 tan-1 t - ∫ 1 - 11 + t2 dt= t2 tan-1 t - t + tan-1 t
∴ I = ∫0π2 2 sin x cos x tan-1 sin x dx= t2 tan-1 t - t + tan-1 t 01= 12 tan-1 1 - 1 + tan-1 1 - 02 tan-1 0 - 0 + tan-1 0 = 1 x π4 - 1 + π4 - 0= π4 - 1 + π4= π2 - 1
Mock Test Series