-->

Application Of Derivatives

Question
CBSEENMA12035960

Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

Solution

Let the rectangle of length  l  and breadth  b  be inscribed in circle of radius  a.

                               

Then, the diagonal of the rectangle passes through the centre and is of length 2a cm.

Now, by applying the Pythagoras Theorem, we have:

( 2a )2 =  l2 + b2

⇒ b2 =  4 a2 -  l2

 b =  4 a2 - l2 Area of rectangle,   A = l   4 a2 - l2 dAdl =   4 a2 - l2  +  l 12   4 a2 - l2   - 2 l  =   4 a2 - l2  -  l2   4 a2 - l2              =  4 a2 - 2 l2 4 a2 - l2dA2dl2 =   4 a2 - l2   - 4 l   -    4 a2 - 2 l2    - 2 l 2  4 a2 - l24 a2 -  l2           = 4 a2 -  l2   - 4 l  + l   4 a2 - 2 l2 4 a2 -  l2 32           =  - 12 a2 l + 2 l34 a2 -  l2 32 =  - 2 l  6 a2 - l2 4 a2 -  l2 32

 

Now,  dAdl  = 0 gives  4 a2 = 2 l2    l =  2 a                      b = 4 a2 - 2 a2   =   2 a2 =  2 a When  l =  2 a, dA2dl2  = - 2   2 a   6 a2 - 2 a2 2   2 a3 = - 8   2 a32  2 a3 = - 4 < 0

 Thus, frrom the second derivative test, when  l2 a, the area of the rectangle is maximum.

Since  l = b = 2 a ,  the rectangle is square.

Hence, of all the rectangles inscribed in the given circle, the square has the maximum area.

Some More Questions From Application of Derivatives Chapter