NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Matrices
Using elementary transformations, find the inverse of the matrx
1 3 - 2- 3 0 - 121 0
The given matrix is A = 1 3 - 2- 3 0 - 1 2 1 0 .We have A A- 1 = IThus, A = I AOr, 1 3 - 2- 3 0 - 1 2 1 0 = 1 0 0 0 1 0 0 0 1 AApplying R2 → + R2 + 3 R1 and R3 → R3 - 2 R1 1 3 - 2 0 9 - 7 0 - 5 4 = 1 0 0 3 1 0 - 2 0 1 ANow, applying R2 → 19 R2 1 3 - 2 0 1 - 79 0 - 5 4 = 1 0 0 13 19 0 - 2 0 1 A
Applying R1 → R1 - 3 R2 and R3 → R3 + 5 R2 1 0 13 0 1 -79 0 0 19 = 0 - 13 0 13 19 0- 13 59 1 AApplying R3 → 9 R3 1 0 13 0 1 -790 0 1 = 0 - 13 0 13 19 0- 3 5 9 AApplying R1 → R1 - 13 R3 and R2 → R2 + 79 R3
1 0 00 1 0 0 0 1 = 1- 2 - 3 - 2 47- 3 59 A ⇒ I = 1- 2 - 3 - 2 47- 3 59 A∴ A-1 = 1- 2 - 3 - 2 47- 3 59 Hence, inverse of the matrix A is 1- 2 - 3 - 2 47- 3 59 .
Mock Test Series