-->

Vector Algebra

Question
CBSEENMA12035955

Find a unit vector perpendicular to each of the vector  a + b   and   a - b , where

  a = 3 i^ + 2 j^ + 2 k^   and    b =  i^ + 2 j^ - 2 k^.

Solution

a = 3 i^ + 2 j^ + 2 k^,     b =  i^ + 2 j^ - 2 k^. a  + b = 4 i^ + 4 j^       and      a  - b = 2 i^ + 4 k^   a  + b   x   a  - b  =  i^   j^  k^4    4      0 2     0     4  = i^  16  - j^  16  + k^  - 8                                           = 16 i^ - 16 j^ - 8 k^    a  + b   x   a  - b    =  162 + ( - 16 )2 + 64                                                      =  256 + 256 + 64                                                      =  576  = 24    

So, the unit vector, perpendicular to each of the vectors  a + b    and    a + b is given by

±   a + b  x  a - b   a + b  x  a - b   = ± 16 i^ - 16 j^ - 8 k^24=  ± 2 i^ - 2 j^ -  k^3 =  ± 2 i^3  23 j^   13 k^