NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Vector Algebra
Find a unit vector perpendicular to each of the vector a→ + b→ and a→ - b→ , where
a→ = 3 i^ + 2 j^ + 2 k^ and b→ = i^ + 2 j^ - 2 k^.
a→ = 3 i^ + 2 j^ + 2 k^, b→ = i^ + 2 j^ - 2 k^.∴ a→ + b→ = 4 i^ + 4 j^ and a→ - b→ = 2 i^ + 4 k^ a→ + b→ x a→ - b→ = i^ j^ k^4 4 0 2 0 4 = i^ 16 - j^ 16 + k^ - 8 = 16 i^ - 16 j^ - 8 k^∴ a→ + b→ x a→ - b→ = 162 + ( - 16 )2 + 64 = 256 + 256 + 64 = 576 = 24
So, the unit vector, perpendicular to each of the vectors a→ + b→ and a→ + b→ is given by
± a→ + b→ x a→ - b→ a→ + b→ x a→ - b→ = ± 16 i^ - 16 j^ - 8 k^24= ± 2 i^ - 2 j^ - k^3 = ± 2 i^3 ∓ 23 j^ ∓ 13 k^
Mock Test Series