NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Differential Equations
Solve the following differential equation:
cos2 x dydx + y = tan x
cos2 x dydx + y = tan x⇒ dydx + sec2 x . y = sec2 x tan xThis equation is in the form of dydx + py = QHere P = sec2 x and Q = sec2 x tan xIntegrating factor, I.F = e∫ p dx = e∫ sec2 x dx = etan x
The general solution can be given by
y ( I. F ) = ∫ ( Q x I. F ) dx + C ..........(i)
Let tan x = t
ddx ( tan x ) = dtdx⇒ sec2 x = dtdx ⇒ sec2 x dx = dt
Therefore, equation (i) becomes:
y etan x = ∫ et . t dt⇒ y etan x = ∫ et . t dt + C⇒ y etan x = t . ∫ et dt - ∫ ddt t . ∫ et dt dt + C⇒ y etan x = t . et - ∫ et dt + C⇒ y etan x = t . et - et + C⇒ y etan x =( t - 1 ) et + C⇒ y etan x =( tan x - 1 ) etan x + C⇒ y = ( tan x - 1 ) + C e- tan x , where C is an arbitary constant.
Mock Test Series