Question
Solve the following differential equation:
ex tan y dx + ( 1 - ex ) sec2 y dy = 0
Solution
The given differential equation is:
ex tan y dx + ( 1 - ex ) sec2 y dy = 0
ex tan y dx = - ( 1 - ex ) sec2 y dy
ex tan y dx = ( ex - 1 ) sec2 y dy
On integrating on both sides, we get
Put ex - 1 = u
ex dx = du
= log u
= log ( ex - 1 ) ............(iii)
From (i), (ii), and (iii), we get
log tan y = log ( ex - 1 ) + log C
log tan y = log C ( ex - 1 )
tan y = C ( ex - 1 )
The solution of the given differential equation is tan y = C ( ex - 1 ).