NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Integrals
Evaluate: ∫ 5 x + 3 x2 + 4 x + 10 dx
∫ 5 x + 3 x2 + 4 x + 10 dxNow, 5 x + 3 = A ddx x2 + 4 x + 10 + B⇒ 5 x + 3 = A 2 x + 4 + B⇒ 5 x + 3 = 2 A x + 4 A + B⇒ 2 A = 5 and 4 A + B = 3⇒ A = 52Thus, 4 52 + B = 3⇒ 10 + B = 3⇒ B = 3 - 10 = -7
On substituting the values of A and B, we get
∫ 5 x + 3 x2 + 4 x + 10 dx = ∫ 52 ddx x2 + 4 x + 10 - 7 x2 + 4 x + 10 dx =∫ 52 2 x +4 - 7 x2 + 4 x + 10 dx = 52 ∫ 2 x +4 x2 + 4 x + 10 dx - 7∫ dx x2 + 4 x + 10 = 52 I1 - 7 I2 ...........( i )
I2 = ∫ 2 x + 4 x2 + 4 x + 10 dxPut x2 + 4 x + 10 = z22 x + 4 dx = 2 z dzThus, I1 = ∫ 2 zz dz = 2 z = 2 x2 + 4 x + 10 + C1I2 = ∫ dx x2 + 4 x + 10 = ∫ dx x2 + 4 x + 4 + 6 = ∫ dx ( x + 2 )2 + 6 2 = log ( x + 2 ) + x2 + 4 x + 10 + C2
Substituting I1 and I2 in ( i ), we get
∴ ∫ 5 x + 3 x2 + 4 x + 10 = 52 2 x2 + 4 x + 10 + C1 - 7 log x + 2 + x2 + 4 x + 10 + C2 = 5 x2 + 4 x + 10 - 7 log x + 2 + x2 + 4 x + 10 + 52 C1 - 7 C2= 5 x2 + 4 x + 10 - 7 log x + 2 + x2 + 4 x + 10 +C, where C = 52 C1 - 7 C2
Mock Test Series