-->

Application Of Derivatives

Question
CBSEENMA12035950

Find the points on the curve  x2 + y2 – 2x – 3= 0  at  whichthe tangents are parallel to x-axis.

Solution

Let  P ( x, y )  be any point on the given curve  x2 + y2 - 2 x - 3 = 0.

Tangent to the curve at the point (x, y ) is given by dydx.

Differentiating the equation of the cueve w.r.t. x we get

2 x + 2 y dydx - 2 = 0dydx = 2 - 2 x2 y = 1 - xy

Let P ( x1, y1 ) be the point on the given curve at which the tangents are parallel to the x-axis.

 dydx  x1, y1  = 0 1 - x1y1 = 0 1 - x1 = 0 x1 = 1

To get the value of  y1  just substitute  x1 = 1  in the equation  x2 + y2 - 2 x - 3 = 0, we get

( 1 )2 + ( y1 )2 - 2 x 1 - 3 = 0

  y1 2 - 4 = 0  y1 2 = 4   y1 = ± 2 

So, the points on the given curve at which the tangents are parallel to the x-axis are  ( 1, 2 )  and  ( 1, - 2 ).

Some More Questions From Application of Derivatives Chapter