-->

Application Of Derivatives

Question
CBSEENMA12035949

Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of t heradius of the base. How fast is the sand cone increasing when the height is 4 cm?

Solution

The volume of a cone  with radius  r  and height  h  is given by the formula

V = 13 π r2 h

According to the question,

h = 16 r   r = 6 h

Substituting in the formula,

 V = 13 π  6 h 2 h = 12 π h3

The rate of change of the volume with respect to time is

dvdt = 12 π ddh  h 3 x dhdt        ....... By chain rule       =  12 π   3 h 2 x dhdt      = 36 π h2 x dhdt                   .........( i )Given that  dvdt = 12 cm3 / sSubstituting the values dvdt = 12   and  h = 4  in equation ( i ), we have,12 = 36 π  4 2 x dhdt dhdt = 1236 π  16   dhdt = 148 π Hence, the height of the sand cone is increasing at the rate of  148 π  cm / s.