-->

Three Dimensional Geometry

Question
CBSEENMA12035931

Write the vector equations of the following lines and hence determine the distance between them:

 x -12 = y - 23 = z + 46;    x - 34 = y - 36 = z + 512

Solution

Given equation of line is  x - 12 = y - 23 = z + 46This can also be written in the standard form as   x - 12 = y - 23 = z -( - 4 )6

The vector form of the above equation is,

r =  i^ + 2 j^ - 4 k  + λ  2i^ + 3 j^ + 6k   r = a1  + λ b           ......(i)where,    a1  = i^ + 2 j^ - 4 k    and   b = 2i^ + 3 j^ + 6kThe second equation of line is   x - 34 = y - 36 = z + 512The above can also be written as   x - 34 = y - 36 = z - ( - 5 )12

The vector form of this equation is

      r =  3 i^ + 3 j^ - 5 k  + μ  4 i^ + 6 j^ + 12 k  r =  3 i^ + 3 j^ - 5 k  + 2 μ  2 i^ + 3 j^ + 6 k  r = a2  + 2 μ b             .........(ii)Where   a2  =  3 i^ + 3 j^ - 5 k    and   b = 2 i^ + 3 j^ + 6 k

Since  b  is same in equation (i)  and  (ii),  the two lines are parallel.

Distance  d, between the two parallel lines is given by the formula,

d =  b x  a2  - a1   bHere, b =  2 i^ + 3 j^ + 6 k       a2  =   3 i^ + 3 j^ - 5 k   and   a1  =   i^ + 2 j^ - 4 k 

On substitution, we get

d =    2 i^ + 3 j^ + 6 k  x  ( 3 i^ + 3 j^ - 5 k  -   i^ + 2 j^  - 4 k  ) 4 + 9 + 36= 149   2 i^ + 3 j^ + 6 k  x   2 i^ + j^ - k  = 17    i^     j^       k2     3       6 2     1  - 1 = 17  i^  - 3 - 6  - j^  - 2 - 12  + k  2 - 6  =  17  - 9 i^ +14 j^ - 4 k 

= 17   81 + 196 + 16 =  2937Thus, the distance between the two given lines is   2937

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.