-->

Application Of Derivatives

Question
CBSEENMA12035930

Show that the right circular cylinder, open at the top, and of given surface area and maximum volume is such that its height is equal to the radius of the base.

Solution

let  r  and  h  be the radius and height of the right circular cylinder with the open top.

So surface area of the cylinder S is given by,

S= π r2 + 2 π r h h = S -  π r22 π r          .........(i)

Let  V  be the volume, so 

V = π r2 h = π r2  S -π r2 2 π r = r  S -π r2 2dVdr = S2 - 3π r22       ..........(ii)For maxima or minima  dVdr = 0 S = 3 π r2    or     r = S3 π

Using this (i)

h = 2 π r22 π r = rd2Vd r2 = - 3 π r= - 3 π S3 π < 0So,  r =  S3 π  is a point of maxima.

And in this case radius of base = height.

Some More Questions From Application of Derivatives Chapter