NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Integrals
Evaluate ∫13 3 x2 + 2 x dx as limit of sums.
I = ∫13 3 x2 + 2x dx
Here a = 1, b = 3
f ( x ) = 3 x2 + 2x h = b - an = 2nSince, ∫ab f ( x ) dx = limh → 0 h f ( a ) + F ( a + h ) ......+ f ( + ( n - 1 ) h )so, ∫13 3 x2 + 2x = limh → 0 h [ ( 3 ( 1 )2 + 2 ( 1 ) ) + ( 3 ( 1 +h )2 + 2 ( 1 +h ) ) + 3 ( 1 + 2h )2 + 2 ( 1 + 2h ) )..........+ 3 ( 1 + ( n - 1 ) h )2 + 2 ( 1 + ( n - 1 ) h ) ] = limh → 0 h [ 3 ( n ) + 3 ( h2 + 4 h2 + .........+ ( n - 1 )2 h2 ) + 3 ( 2h + 4h + .......+ 2 ( n - 1 ) h ) + 2 n + 2 ( h + 2 h + ..........+ ( n - 1 ) h ) ] = limh → 0 h [ 5 n h + 3 h3 ( 12 + 22 + .....+ ( n - 1 )2 + 6 h2 ( 1 + 2 + ...........+ ( n - 1 ) )+ 2 h2 ( 1 + 2 + ( n - 1 ) ) ]
= limh → 0 5 n h + 3h3 × ( n - 1 ) n ( 2n - 1 )6 + 8 h2 ( n ) ( n - 1 )2 = limh → 0 10 + n h - h n h 2 n h - h 2 + 4 ( n h ) ( n h - h ) = 10 + 2 ×2 × 42 + 4 x 2 x 2 = 10 + 8 + 16 = 34
Mock Test Series