-->

Differential Equations

Question
CBSEENMA12035920

Find the particular solution of the differential equation satisfying the given conditions: x2 dy + (xy + y2 )dx = 0; y = 1 when x = 1.

Solution

x2 dy +  xy + y2  dx = 0x2 dy =-  xy + y2  dx dydx = - -  xy + y2 x2          ..........(i)

This is a homogeneous differential equation.

Such type of equations can be reduced to variable separable form by the substitution  y = vx.

Differentiating w.r.t.x we get, 

ddx  y  = ddx  vx   dydx = v + x dvdxsubstituting the value of  y  and dydx in equation  (i), we get:v + x dvdx = -  x × vx +  vx 2 x2  x dvdx = - v2 - 2v = -v  v + 2  dvv  v + 2  = - dxx 12  1v - 1v + 2  dv = - dxx

Integrating both sides, we get:

12  log v - log  v + 2  = - log x + log C 12 log  vv + 2  = log Cx vv + 2  = Cx2 Substituting   v = yx

 yxyx + 2 = Cx2 yy + 2x = C2x2 x2yy + 2x = D                           ............(ii)

Now, it is given that  y = 1  at  x = 1.

 11 + 2 = D   D = 13Substituting   D = 13 in equation (ii), we getx2yy + 2x = 13   y + 2x = 3x2ySo, the required solution is   y + 2x = 3x2y

Some More Questions From Differential Equations Chapter