-->

Application Of Derivatives

Question
CBSEENMA12035919

Find the equations of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.

Solution

Equation of the curve is  y= x3 + 2x + 6 

Slope of the normal at point  ( x, y ) = -1dydx

dydx = 3x2 + 2

on substitution, we get

Slope of the normal = -13x2 + 2         ..........(i)

Normal to the curve  is parallel to the line  x + 14y + 4 = 0,

i.e. y = -114 x - 414

So the slope of the line is the slope of the normal.

Slope of the line is - 114 = -13x2 + 2 3x2 + 2 = 14 3x2 = 12 x2 = 4 x = ± 2

When  x = 2,  y = 18  and when  x = -2,  y = -6

Therefore, there are two normals to the curve   y = x3 + 2x + 6.

Equation of  normal through point ( 2, 18 ) is given by:

y - 18 = -114  x - 2  14y - 252 = -x + 2 x + 14y - 254 = 0

Equation of normal through point ( -2, -6 ) is given by:

y -  - 6  = -114  x -  - 2  14y  + 84 = -x - 2 x + 14y + 86 = 0

Therefore, the equation of normals to the curve are  x + 14y - 254 = 0  and x + 14y + 86 = 0.