-->

Integrals

Question
CBSEENMA12035916

Evaluate: 0π x1 + sinx  dx

Solution

Let I = 0π x1 + sinx dx          .........(i)Using the property  0a f ( x ) dx =  0a f ( a -x ) dx I =  0π π - x1 + sin  π - x  dx       = 0π π - x1 + sin x dx           .........(ii)

Now adding (i) and (ii), we get

2I = 0π x1 + sinx dx + 0π π - x1 + sinx dx    = 0π π1 + sinx dx    = π 0π 11 + sinx dx    =  π 0π  1 - sinx  1 - sin2x  dx    =  π 0π  1 - sinx  cos2x  dx    = π   0π 1cos2x - sinxcos2x  dx 

    = π  0π sec2 x - secx tanx dx    = π 0π sec2 x dx - 0π secx tanx dx     = π   tanx 0π  -  secx 0π  2I =  π  2    I =  πSo, 0π x1 + sinx dx = π

Some More Questions From Integrals Chapter