NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Integrals
Evaluate: ∫0π x1 + sinx dx
Let I = ∫0π x1 + sinx dx .........(i)Using the property ∫0a f ( x ) dx = ∫0a f ( a -x ) dx⇒ I = ∫0π π - x1 + sin π - x dx = ∫0π π - x1 + sin x dx .........(ii)
Now adding (i) and (ii), we get
2I = ∫0π x1 + sinx dx + ∫0π π - x1 + sinx dx = ∫0π π1 + sinx dx = π ∫0π 11 + sinx dx = π ∫0π 1 - sinx 1 - sin2x dx = π ∫0π 1 - sinx cos2x dx = π ∫0π 1cos2x - sinxcos2x dx
= π ∫0π sec2 x - secx tanx dx = π ∫0π sec2 x dx - ∫0π secx tanx dx = π tanx 0π - secx 0π ⇒ 2I = π 2 ⇒ I = πSo, ∫0π x1 + sinx dx = π
Mock Test Series