-->

Probability

Question
CBSEENMA12035911

On a multiple choice examination with three possible answers (out of which only one is correct) for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

Solution

Let X denote the number of questions answered correctly by guessing in multiple choice examinations.

Probability of getting a correct answer by guessing, p= 13

Therefore,  q, the probability of an incorrect answer by guessing = 1 - 13 = 23

There are in 5 questions in all.

So X follows binomial distribution with n = 5,  p = 13  and  q = 23

p  X = x  = nCx . qn - x. px = 5Cx . 235 - x. 13xp ( guessing more than 4 correct answers ) = p ( X  4 )       = p ( X = 4 ) + p ( X = 5 )         =  5C4 . 235 - 4. 134 +  5C5 . 235 - 5. 135       = 5 x 23 . 181 + 1 x 1 1243       Using nCr = n! n - 1 ! r!       = 11243

Some More Questions From Probability Chapter