-->

Three Dimensional Geometry

Question
CBSEENMA12035904

Write the vector equation of the following line:

x - 53 = y + 47 = 6 - z2

Solution

The given equation of line is  x - 53 = y + 47 = 6 - z2i.e. in standard form   x - 53 = y -(- 4 )7 = z - 6-2Comparing this equation with standard form   x - x1a = y - y1b = z - z1c

 

We get,   x1 = 5,    y1 = -4,   z1 = 6,    a = 3,     b = 7,   c = -2

 

Thus, the required line is parallel to the vector   3i^ + 7j^ - 2k and passes through the point ( 5, -4, 6 ).

The vector form of the line can be written as r = a + λ b, where λ is a constant.

Thus, the required equation is r =  5i^ - 4j^ + 6k  + λ  3i^ + 7j^ - 2k 

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.