-->

Application Of Derivatives

Question
CBSEENMA12035894

Find the volume of the largest cylinder that can be inscribed in a sphere of radius r.

Solution

The given sphere is of radius R. Let h be the height and r be the radius of the cylinder inscribed in the sphere.

Volume of cylinder

V = πR2h                                           .........(i)

In right angled triangle OBA

                     

AB2 + OB2 = OA2R2 + h24 = r2So, R2 = r2 - h24                          .............(ii)

Putting the value of R2 in equation (i), we get

V = π  r2 - h24 . hV = π  r2h - h34                    ...............(iii) dVdh =  π  r2 - 3h24          ...............(iv)For stationary point, dVdh = 0 π  r2 - 3h24 = 0r2 = 3h24             h2 = 4r23          h =  2r3Now   d2Vdh2 = π   - 64 h d2Vdh2 at h - 2r3 = π  - 32 . 2r3 < 0

 Volume is maximum at  h = 2r3Maximum volume is = π  r2 x 2r3 - 14 x 8r333  = π  2r33 - 2r333 = π  6r3 - 2r333  = 4πr333 cu. unit