NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Integrals
Evaluate: ∫0π2 2 log sin x - log sin 2x dx
I = ∫0π2 2 log sin x - log sin 2x dxI = ∫0π2 log sin2 x 2 sin x . cos x . dx I = ∫0π2 log tan x 2 . dx .............(i)Using property ∫0af ( x ) dx = ∫0af ( a - x ) dx
We get,
I = ∫0π2 log tan π2 - x 2 dx⇒ I = ∫0π2 log cot x2 dx ........(ii)
Adding (i) and (ii)
2I = ∫0π2 log tan x2 + log cot x2 dx⇒ 2I = ∫0π2 log tan x2 cot x2 dx⇒ I = 12∫0π2 log 14 dx⇒ I = 12 log 14 x π2 ⇒ I = 12 log 142 x π2 ⇒ I = log 12 x π2 ⇒ I = π2 log 12
Mock Test Series