NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Determinants
Using properties of determinants prove the following:
a bca - b b - c c - ab + c c + a a + b = a3 + b3 + c3 - 3abc
∆ = a b ca - b b - c c - ab + c c + a a + bApplying C1 → C1 + C2+C3 ∆ = a + b + c b c0 b - c c - a2a + b + c c + a a + b∆ = a + b + c 1 b c0 b - c c - a2 c + a a + bR3 → R3 - 2R1∆ = a + b + c 1 b c 0 b - c c - a0 c + a - 2b a + b - 2c
Expanding along C1, We have,
∆= a + b + c b - c a + b - 2c - c - a c + a - 2b ⇒∆= a + b + c ba + b2 - 2bc - ca - cb + 2c2 c2 + ac - 2bc - ac - a2 + 2ab ⇒∆= a + b + c a2 + b2 + c2 - ca - bc - ab ⇒∆= a + b + c a2 + b2 + c2 - ab - bc - ac ⇒∆=a3 + b3 + c3 - 3abc = R.H.S.
Mock Test Series