-->

Differential Equations

Question
CBSEENMA12035885

Find the particular solution, satisfying the given condition, for the following differential equation:

dydx - yx + cosec yx = 0 ;   y = 0  when  x = 1

Solution

dydx - yx + cosec yx = 0      .......(i)y = 0   When  x = 1Let  yx = t   y = xtdydx = x dtdx + tBy substituting  dydx in equation (i) x dt dx + t  - t + cosect = 0 x dtdx = - cosect  dtcosect +  dxx = 0 -cost + logx = C   -cos yx + logx = C

Using  y = 0  When  x= 1

- 1 + 0 = C    C =-1So the solution is :  cos yx = logx + 1

Some More Questions From Differential Equations Chapter