-->

Differential Equations

Question
CBSEENMA12035884

Solve the following differential equation:

 1 + x2  dydx + y = tan-1 x

Solution

 1 + x2  dydx + y = tan-1 x

The equation can be expressed as

dydx + y1 + x2 = tan-1 x1 + x2               .........(i)

This is a linear differential equation of the type  dydx + Py = Q

So, I.F = e 11 + x2 dx = etan-1xSolution of (i)y etan-1x =  etan-1x tan-1 x1 + x2 dx        ........(ii)For R.H.S.,  let   tan-1 x = t   11 + x2 dx = dt  

Substituting  in equation (ii)

yetan-1x =  et. tdt y.etan-1x = tet - et  + C y.etan-1x =etan-1x  tan-1 x - 1  + C y =  tan-1 x - 1  + Ce-tan-1x

Some More Questions From Differential Equations Chapter