-->

Three Dimensional Geometry

Question
CBSEENMA12035883

Find the value of λ so that the lines, 1 - x3 = y - 22λ = z - 32 and x - 13λ = y - 11 = 6 - z7 are perpendicular to each other.

Solution

Given lines are  

1 - x3 = y - 22λ = z - 32   and    x - 13λ = y - 11 = 6 - z7

let us rewrite the equations of the given lines as follows:

- x - 1 3 = y - 22λ = z - 32   and    x - 13λ = y - 11 = -  z - 67

That is we have, 

x - 1-3 = y - 22λ = z - 32

And 

x - 13λ = y - 11 = z - 6-7

The lines are perpendicular so angle between them is 90°

So, cosθ = 0

Here ( a1, b1, c1 ) = ( -3, 2λ , 2 ) 

and

 ( a2, b2, c2 ) = ( 3λ, 1, -7 )

For perpendicular lines

a1a2 + b1b2 + c1c2 = 0-9λ + 2λ - 14 = 0-7λ - 14 = 0 λ = 14-7 λ = -2

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.