Sponsor Area

Application Of Derivatives

Question
CBSEENMA12035855

Show that the height of the cylinder of maximum volume that can be inscribed in a cone of height h is 13h.

Solution

Let a cylinder be inscribed in a cone of radius R and height h.

Let a radius of the cylinder be  r and its height be h1.

                    

It can be easily seen that AGI and   ABD are similar.

AIAD = GIBD h - h1h = rRr = Rh h - h1Volume (V) of the cylinder  = πr2h1 V = π R2h2  ( h - h1 )2  h1 V = π R2h2 [ h2 + h12 - 2hh1 ] x  h1dvdh1 =  π R2h2  h2 + h12 - 2hh1 + h1(2h1  - 2h )dvdh1 =  π R2h2  ( h2 + 3h12 - 4hh1 )

 

Now,dVdh1 = 0πR2h2 ( h2 + 3h12 - 4hh1 ) = 0 3h12 - 4hh1  + h2 = 0 3h12 - 3hh1  -  hh1 + h2 = 0 3h1( h1 - h ) -h ( h1 - h ) = 0   ( h1 - h ) ( 3h1 - h ) = 0   h1  = h,     h1  = h3

It can be noted that if h1 = h, then the cylinder cannot be inscribed in the cone.

 h1 = h3Now,  d2Vdh12 = πR2h2 0 + 6h1 - 4h = πR2h26h1 - 4h d2Vdh12 h1 = h3 =  πR2h26h3 - 4h = -2πR2h<0

Therefore, by the second derivative test, h1h3 is the point of local maxima of V.

So, the volume of the cylinder is the maximum when  h1h3.

Hence, the height of the cylinder of the maximum volume that can be inscribed in a cone of height h is 13h.