-->

Application Of Derivatives

Question
CBSEENMA12035854

Show that the rectangle of maximum area that can be inscribed in a circle is a square.

Solution

Let a rectangle ABCD be inscribed in a circle with radius r.

                          

Let DBC = θIn right BCD:BCBD = cosθBC = BD cosθ = 2r cosθCDBD = sinθ CD = BD sinθ = 2r sinθ

Let A be the area of the rectangle ABCD.

 A = BC X CD A = 2r cosθ  x 2r sinθ = 4r2 sinθcosθ  A =  2r2 sin2θ               .......( sin2θ =2 sinθcosθ )dA = 2 x   2r2 cos2θ =   4r2 cos2θNow, dA = 0 4r2 cos2θ = 0   cos2θ = 0 cos2θ = cosπ2 θ = π4 d2Ad2θ = - 2 x  4r2 sin2θ = - 8 r2 sin2θ d2Ad2θθ = π4 =  - 8 r2 sin  2 xπ4  =   - 8 r2 x 1 = - 8 r2 <0

Therefore, by the second derivative test, θ = π4 is the point of the local maxima of A.

So, the area of the rectangle ABCD is the maximum at θ = π4

Now, θ = π4

 CDBC = tan π4 CDBC = 1  CD = BC Rectangle ABCD is a square.

Hence, the rectangle of the maximum area that can be inscribed in a circle is a square.