NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Determinants
Using properties of determinants, prove the following:
αβγα2β2γ2β + γ γ + α α + β = α - β β - γ γ - α α + β + γ
∆ = α β γα2 β2 γ2β + γ γ + α α + βApplying R3→ R3 + R1∆ = α β γα2 β2 γ2α+ β + γ α+ β + γ α+ β + γ = α+ β + γ α β γα2 β2 γ21 1 1Applying C1→C1 - C2 and C2→C2 - C3
∆ = α + β + γ = α - β β - γ γα2 - β2 β2 - γ 2 γ20 0 0 = (α + β + γ ) (α - β) (β - γ ) 1 1 1α + β β + γ γ0 0 0 = (α + β + γ ) (α - β) (β - γ ) 1 (β + γ ) -1 (α + β) = (α - β) (β - γ ) (α + β + γ ) ( β + γ - α - β ) = (α - β) (β - γ ) (γ - α ) (α + β + γ )
Hence proved.
Mock Test Series