-->

Three Dimensional Geometry

Question
CBSEENMA12035850

Find the shortest distance between the following lines:

x - 31 = y - 5-2 = z - 71 and x + 17 = y + 1-6 = z + 11 

Solution

x - 31 = y - 5-2 = z - 71

The vector form of this equation is:

r = 3i^ + 5j^ + 7k^ + λ i^ - 2j^ +k^r = a1 + λ b1              ............(1)x + 17 = y + 1-6 = z + 11

The vector form of this equation is:

r = -i^ -j^ -k^ + λ 7i^ -6j^ +k^Therefore, a1 = 3i^ +5j^ -7k^     b1 =i^ -2j^ +k^                a2 = -i^ -j^ -k^  and  b2 = 7i^ -6j^ +k^

Now, the shortest distance between these two lines is given by:

 

d = b1 x b2 . a2 - a1b1 x b2b1 x b2 = i^j^k^1-2 17-61           =i^ ( -2 + 6 ) -j^ ( 1 - 7 ) + k^ (-6 + 14)           = 4i^ + 6j^ + 8 k^b1 x b2 = 42 + 62 + 82             = 116a2 - a1 = -i^ -j^ - k^ - 3i^ +5j^ + 7k^             =- 4i^ - 6j^ - 8 k^ d = 4i^ + 6j^ + 8 k^ . - 4i^ - 6j^ - 8 k^ 116       = -16 - 36 - 64116       = -116116  = 116

 

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.