-->

Vector Algebra

Question
CBSEENMA12035848

If a = i^ + j^ + k^   and   b = j^ - k^,  find a vector  c  such that a × c = band a.c = 3

Solution

Let c = xi^ + yj^ + zk ^ a = i^ + j^ + k^ a x c = i^ j^ k^1 1  1x y z  a x c =  i^ ( z - y ) -  j^ ( z - x ) +  k^ ( y - x )    ...............(1)Now,  a x c = bb = j^ - k^                                                                ................(2)

 

Comparing (1) and (2), we get:

z - y = 0   z = y                                                   .............(3)z - x = -1                                                                 .............(4)y - x = -1                                                                 .............(5)

Also, given that

a.c =3 i^ + j^ + k^ . x i^ +y j^ +z k^ = 3x + y + z = 3

Using (3), we get,  x + 2y = 3    .                  ...............(6)

Adding (5) and (6), we get

 

4y = 2  y = 23 z = 23       z=yfrom (6) we have,x = 3 - 2y x = 3 - 2 x 23 x = 9 - 43 x = 53 c = 53 i^ + 23 j^ + 23 k^.Thus the required vector  is c = 53 i^ + 23 j^ + 23 k^.