NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Differential Equations
Solve the following differential equation:
dydx = x ( 2y - x )x ( 2y + x), if y = 1 when x = 1
We need to solve the following differential equation
dydx = x ( 2y - x )x ( 2y + x ) dydx = 2y - x 2y + x ........(1)
It is a homogeneous differential equation.
Let y = vx ..........(2)
∴ dydx = v + x dvdx ..........(3)
Substituting (2) and (3) in (1), we get:
v + x dvdx = x ( 2v - 1 )x ( 2v + 1 ) x dvdx = 2v - 1 2v + 1 - vx dvdx = - 2v2 = v - 1 2v + 1 2v + 1- 2v2 + v - 1 dv = 1x dx2v + 12v2 - v + 1 dv = - 1x dx
Integrating both sides,
∫124v - 1 + 32v2 - v + 1 dv = ∫1x dx ∫124v - 1 2v2 - v + 1 dv + ∫321 2v2 - v + 1 dv = ∫- 1x dx
∫124v - 12v2 - v + 1 dv + ∫341v2 - v2 + 12 = ∫-1x dx
12 log 2v2 - v + 1 + 34 ∫ 1v2 - v2 + 116 + 716 dv =- log x + C12 log 2v2 - v + 1 + 34 ∫ dv v - 142+ 742 =- log x + C12 log 2v2 - v + 1 + 34 x 47 tan-1v - 1474 = - log x + C12 log 2v2 - v + 1 + 37 tan-14v - 17 = C- log x
Put v = yx12 log 2 yx2 - yx + 1 + 37 tan-14yx - 17 = C - log x12 log 2y2 - xy + x2x2 + 37 tan-1 4y - x7x = C - log x ..........(4)Now y = 1 when x = 112 log 2(1)2 - 1 x 1 + 1212 + 37 tan-1 4 x 1 - 17 x 1 = C - log 1 12 log 2 + 37 tan-1 37 = C .................(5)
Therefore, from (4) and (5) we get:
12log 2y2 - xy + x2x2 + 37tan-1 4y - x7 x= 12log 2 + 37tan-137 - log x12log 2y2 - xy + x2x2 - 12log 2 + log x= 37 tan-1 37 - tan-1 4y - x7 x12log 2y2 - xy + x2x2 x2 = 37 tan-1 3x - 4y + x7 x1 + 3 x (4y - x )7x12log 2y2 - xy + x22 = 37 tan-1 4 (x - y )7 x 7x + 12y - 3x 7x12log 2y2 - xy + x22 = 37 tan-1 7 ( x - y )( x + 3y )
Mock Test Series