-->

Differential Equations

Question
CBSEENMA12035845

Solve the following differential equation:
(x2 − y2) dx + 2xy dy = 0   given that y = 1 when x = 1

Solution

( x2 - y2 ) dx + 2xy dy = 0

 

dydx = y2 - x22xy          .........(1)

It is a homogeneous differential equation.

Let y = vx                ..........(2)

 

dydx = v + xdvdx        ...........(3)

 

Substituting (2) and (3) in (1), we get:

 

v + xdvdx = v2 x2 - x22x . vxv + xdvdx =  x2 (v2 - 1 )2vx2 = v2 - 12v2v2 + 2vx dvdx = v2 - 1 2vx dvdx = - v2 - 12vv2 + 1 dv = -dxx

 

Integrating both sides, we get:

 

2vv2 + 1 dv = -1x dxlog v2 + 1 = - log x + log Clog v2 + 1 =  log Cxv2 + 1 = Cxx ( v2 + 1 ) = C

 

x yx2 + 1 = C  y2 + x2 = Cx           .........(4)

 

It is given that when   x = 1,  y = 1

 

(1)2 + (2)2 =  C(1)

 

  C = 2

 

Thus, the required solution is  y2 + x2 = 2x.

 

Some More Questions From Differential Equations Chapter