-->

Integrals

Question
CBSEENMA12035844

Evaluate: 0πxsinx1 + cos2x dx

Solution

I = 0πxsinx1 + cos2xdx           .............(1)I = 0π(π - x) sin (π - x)1 + cos2 (π - x)dxI = 0π(π - x) sin x1 + cos2 xdxI = 0ππ  sin x1 + cos2 xdx -  0πxsinx1 + cos2xdx           ..........(2)

Adding (1) and (2), we get:

 

2I = 0ππ sinx1 + cos2x dxNow, let  cosx = t  -sinx dx = dtWhen   x = π,  t = cosπ = -1When    x = 0,  t = cos0 = 12I =  1-1π - dt1 + t2 2I = π  1-1 11 + t2 dt2I = π  tan-1t 1-12I = π  tan-1 1 - tan-1 -1  2I = π π4 - -π42I = π22 I = π24

Some More Questions From Integrals Chapter