-->

Application Of Derivatives

Question
CBSEENMA12035843

Find the equation of tangent to the curve x = sin 3t, y = cos 2t, at t = π4

Solution

X = sin3t    dxdt = 3 cos3t   xt = π4 = sin3π4 = 12y = coc2t dydt = -2 sin2t  yt = π4 = cos2t = cos2π4 = 0 dydx =  dydt. dtdx             = -2sin2t13cos3t              = -23sin2tcos3t

 

dydxt = π4 = -23sin2 x π4cos3 x π4                        =  -23sinπ2cos3π4 = 223Therefore, the equation of the tangent at the point 12,0 isy - 0 = 223 x - 12 y = 223 x  - 233y - 22x + 2 = 0