NCERT Classes
Previous-Year-Papers
Entrance Exams
State Boards
Home > Differential Equations
If y = sin (sin x), prove that d2 ydx2 + tan x dydx + y cos2 x = 0
As y = sin (sin x)
⇒ dydx = cos (sin x) cos x.... (i)and d2ydx2= cos (sin x) (-sin x) - cos2 x (sin(sinx))Now d2ydx2 + tan x dydx + y cos2 x= -sinx cos(sin x) - cos 2 x sin (sin x) + sin xcos x x cos x cos(sin x) + sin (sin x) cos2x = - sin x cos (sin x) -cos2 x sion (sin x) + sin x cos(sin x) + cos2 x sin (sin x) = 0 = R.H.SHence we have proved thatd2ydx2 + tan x dydxx + y cos2 x = 0 for y = sin (sin x)
Mock Test Series