-->

Differential Equations

Question
CBSEENMA12035755

Show that the differential equation 2 ye to the power of straight x divided by straight y end exponent dx plus left parenthesis straight y minus 2 straight x space straight e to the power of straight x divided by straight y end exponent right parenthesis space dy space equals space 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.

Solution
2 ye to the power of straight x divided by straight y end exponent dx plus left parenthesis straight y minus 2 straight x space straight e to the power of straight x divided by straight y end exponent right parenthesis dy space equals space 0
dy over dx space equals space fraction numerator 2 xe to the power of begin display style straight x over straight y end style end exponent minus straight y over denominator 2 ye to the power of begin display style straight x over straight y end style end exponent end fraction space space space space... left parenthesis 1 right parenthesis
Let space straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator 2 xe to the power of begin display style straight x over straight y end style end exponent minus straight y over denominator 2 ye to the power of begin display style straight x over straight y end style end exponent end fraction
 Then comma space straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda open parentheses 2 xe to the power of begin display style straight x over straight y end style end exponent minus straight y close parentheses over denominator straight lambda open parentheses 2 ye to the power of begin display style straight x over straight y end style end exponent close parentheses end fraction equals straight lambda degree open square brackets straight F left parenthesis straight x comma space straight y right parenthesis close square brackets
Thus, F(x, y) is a homogeneous function of degree zero. Therefore, the given differential equation is a homogeneous differential equation. 
Let x = vy
Differentiating w.r.t. y, we get
dx over dy equals straight v plus straight y dv over dy
Substituting the value of x and dx over dy in equation (1), we get
straight v plus straight y dv over dy equals fraction numerator 2 vye to the power of straight v minus straight y over denominator 2 ye to the power of straight v end fraction space equals fraction numerator 2 ve to the power of straight v minus 1 over denominator 2 straight e to the power of straight v end fraction
or space space straight y dv over dy space equals fraction numerator 2 ve to the power of straight v minus 1 over denominator 2 straight e to the power of straight v end fraction minus straight v
or space space straight y dv over dy equals negative fraction numerator 1 over denominator 2 straight e to the power of straight v end fraction
or space space 2 straight e to the power of straight v dv space equals fraction numerator negative dy over denominator straight y end fraction
or space space integral 2 straight e to the power of straight v. dv space equals space minus integral dy over straight y
or space space 2 straight e to the power of straight v space equals space minus log space open vertical bar straight y close vertical bar plus straight C
Substituting the value of v, we get
2 straight e to the power of straight x over straight y end exponent plus log space open vertical bar straight y close vertical bar space equals space straight C space space... left parenthesis 2 right parenthesis
Substituting x = 0 and y = 1 in equation (2), we get
2 straight e degree plus log space open vertical bar 1 close vertical bar space equals space straight C space rightwards double arrow space straight C space equals space 2
Substituting the value of C in equation (2), we get
2 straight e to the power of straight x over straight y end exponent plus log space open vertical bar straight y close vertical bar space equals space 2 comma which is the particular solution of the given differential equation. 

Some More Questions From Differential Equations Chapter