-->

Differential Equations

Question
CBSEENMA12035738

Differentiate the following function with respect to x:
left parenthesis log space straight x right parenthesis to the power of straight x plus straight x to the power of log straight x

Solution

 Let space straight y space equals left parenthesis logx right parenthesis to the power of straight x plus straight x to the power of logx space space space space space space space space... left parenthesis 1 right parenthesis
Now space let space straight y subscript 1 equals left parenthesis log space straight x right parenthesis to the power of straight x space and space straight y subscript 2 equals straight x to the power of logx
rightwards double arrow space space straight y space equals space straight y subscript 1 plus straight y subscript 2 space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Differentiating (2), w.r.t.x, 
dy over dx equals dy subscript 1 over dx plus dy subscript 2 over dx space space space space space space space space space space... left parenthesis 3 right parenthesis

Now consider straight y subscript 1 space equals space left parenthesis log space straight x right parenthesis to the power of straight x
Taking log on both sides,
logy subscript 1 space equals space straight x space log left parenthesis log space straight x right parenthesis
Differentiating, w.r.t.x, we get
1 over straight y subscript 1 dy subscript 1 over dx equals straight x cross times 1 over logx cross times 1 over straight x plus 1 cross times log left parenthesis log space straight x right parenthesis
rightwards double arrow space space dy subscript 1 over dx space equals space straight y subscript 1 open parentheses 1 over logx plus log left parenthesis log space straight x right parenthesis close parentheses
rightwards double arrow dy subscript 1 over dx equals left parenthesis logx right parenthesis to the power of straight x open parentheses fraction numerator 1 over denominator log space straight x end fraction plus log space left parenthesis log space straight x right parenthesis close parentheses space space space space space space... left parenthesis 4 right parenthesis
Now comma space consider space straight y subscript 2 space equals straight x to the power of logx
logy subscript 2 space equals space left parenthesis log space straight x right parenthesis left parenthesis log space straight x right parenthesis space equals left parenthesis log space straight x right parenthesis squared
Differentiating space straight w. straight r. straight t. straight x comma space we space get
1 over straight y subscript 2 dy subscript 2 over dx equals 2 left parenthesis log space straight x right parenthesis cross times 1 over straight x
rightwards double arrow space dy subscript 2 over dx space equals straight y subscript 2 open parentheses fraction numerator 2 logx over denominator straight x end fraction close parentheses equals straight x to the power of logx open parentheses fraction numerator 2 logx over denominator straight x end fraction close parentheses... left parenthesis 5 right parenthesis
Using equations (3), (4) and (5), we get:
dy over dx equals left parenthesis log space straight x right parenthesis to the power of straight x open square brackets 1 over logx plus log left parenthesis log space straight x right parenthesis close square brackets plus straight x to the power of logx open parentheses fraction numerator 2 logx over denominator straight x end fraction close parentheses

Some More Questions From Differential Equations Chapter