Sponsor Area

Application Of Derivatives

Question
CBSEENMA12035722

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum when the angle between them is 60 degree.

Solution

Let ABC be the right angle triangle with base b and hypotenuse h. 
Given that b+ h = k
Let A be the area of the right triangle.
straight A equals 1 half cross times straight b cross times square root of straight h squared minus straight b squared end root
rightwards double arrow space space straight A squared space equals space 1 fourth straight b squared left parenthesis straight h squared minus straight b squared right parenthesis
rightwards double arrow space straight A squared equals space space straight b squared over 4 open parentheses open parentheses straight k minus straight b close parentheses squared minus straight b squared close parentheses space space space space space space open square brackets because space straight h space equals space straight k minus straight b close square brackets
rightwards double arrow straight A squared space equals space straight b squared over 4 open parentheses straight k squared plus straight b squared minus 2 kb minus straight b squared close parentheses
rightwards double arrow straight A squared space equals space straight b squared over 4 left parenthesis straight k squared minus 2 kb right parenthesis
rightwards double arrow straight A squared equals space fraction numerator straight b squared straight k squared minus 2 kb cubed over denominator 4 end fraction
Differentiating the above function with respect to be, we have
2 straight A dA over db equals fraction numerator 2 bk squared minus 6 kb squared over denominator 4 end fraction space... left parenthesis 1 right parenthesis
rightwards double arrow space space dA over db equals fraction numerator bk squared minus 3 kb squared over denominator 2 straight A end fraction
For the area to be maximum, we have
dA over db equals 0
rightwards double arrow space bk squared minus 3 kb squared space equals 0
rightwards double arrow space bk space equals space 3 straight b squared
rightwards double arrow space straight b space equals space straight k over 3
Again differentiating the function in equation (1), with respect to b, we have
2 open parentheses dA over db close parentheses squared plus 2 straight A fraction numerator straight d squared straight A over denominator db squared end fraction equals fraction numerator 2 straight k squared minus 12 kb over denominator 4 end fraction space... left parenthesis 2 right parenthesis
Now substituting dA over db equals 0 space and space straight b space equals space straight k over 3 in equation (2), we have
2 straight A fraction numerator straight d squared straight A over denominator db squared end fraction space equals space fraction numerator 2 straight k squared minus 12 straight k open parentheses begin display style straight k over 3 end style close parentheses over denominator 4 end fraction
space space space rightwards double arrow 2 straight A fraction numerator straight d squared straight A over denominator db squared end fraction space equals space fraction numerator 6 straight k squared minus 12 straight k squared over denominator 12 end fraction
space space rightwards double arrow space 2 straight a fraction numerator straight d squared straight A over denominator db squared end fraction equals negative straight k squared over 2
space space space rightwards double arrow space fraction numerator straight d squared straight A over denominator db squared end fraction equals negative fraction numerator straight k squared over denominator 4 straight A end fraction less than 0
Thus area is maximum at straight b equals straight k over 3.
Now, straight h equals straight k minus straight k over 3 equals fraction numerator 2 straight k over denominator 3 end fraction
Let straight theta be the angle between the base of the triangle and the hypotenuse of the right angle. 
Thus comma space cosθ equals straight b over straight h equals fraction numerator begin display style straight k over 3 end style over denominator begin display style fraction numerator 2 straight k over denominator 3 end fraction end style end fraction equals 1 half
rightwards double arrow space straight theta equals space cos to the power of negative 1 end exponent open parentheses 1 half close parentheses equals space straight pi over 3

Some More Questions From Application of Derivatives Chapter