Sponsor Area

Application Of Derivatives

Question
CBSEENMA12035621

If the radius of a sphere is measured as 9 m with an error of 0.03 m. then find the approximate error in calculating its surface area.

Solution

 Let r be the radius of the sphere and ∆r be the error in measuring the radius.
∴    r = 9 m, ∆r = 0.03 m.  Let S be the surface area of sphere.
therefore space space space space space straight S space equals space 4 πr squared
Now comma space space space space space dS space equals space open parentheses dS over dr close parentheses increment straight r space equals space left parenthesis 8 πr right parenthesis space increment straight r
space space space space space space space space space space space space space space space space space space space space space equals space 8 straight pi space cross times 9 space cross times space 0.03 space equals space 2.16 space straight pi space straight m squared
therefore space space space space approximate space error space in space calculating space the space surface space area space equals 2.16 space straight pi space straight m squared

Some More Questions From Application of Derivatives Chapter