-->

Application Of Derivatives

Question
CBSEENMA12035620

If the radius of a sphere is measured as 7 m with an error of 0.02 m, then find the approximate error in calculating its volume.

Solution

Let r be the radius of the sphere and ∆r be the error in measuring the radius.
∴    r =7 m. ∆r = 0.02 m
Let V be volume of sphere
therefore space space space space space space space straight V space equals space 4 over 3 πr cubed
Now comma space space space space space space dV space equals space open parentheses dV over dr close parentheses increment straight r

space
                  equals space 4 πr squared increment straight r space equals space 4 straight pi left parenthesis 7 right parenthesis squared space left parenthesis 0.02 right parenthesis
space equals space 4 straight pi space cross times space 49 space cross times space 0.02
space equals space 3.92 space straight pi space straight m cubed
therefore approximate error in caluclating the volume = 3.92 space straight pi space straight m cubed.

Some More Questions From Application of Derivatives Chapter