-->

Application Of Derivatives

Question
CBSEENMA12035605

Use differentials to approximate fourth root of 17 over 81.

Solution
open parentheses 17 over 81 close parentheses to the power of 1 fourth end exponent space equals space fraction numerator left parenthesis 17 right parenthesis to the power of begin display style 1 fourth end style end exponent over denominator left parenthesis 81 right parenthesis to the power of begin display style 1 fourth end style end exponent end fraction space equals space fraction numerator left parenthesis 17 right parenthesis to the power of begin display style 1 fourth end style end exponent over denominator 3 end fraction
Let    straight f left parenthesis straight x right parenthesis space equals space straight x to the power of 1 fourth end exponent comma space space space straight x space equals space 16 comma space space dx space equals space 1 comma space space straight f left parenthesis straight x plus increment straight x right parenthesis space equals space 17 to the power of 1 fourth end exponent
             increment straight y space equals space straight f left parenthesis straight x plus increment straight x right parenthesis space minus space straight f left parenthesis straight x right parenthesis
therefore space space space straight f left parenthesis straight x plus increment straight x right parenthesis space equals space straight f left parenthesis straight x right parenthesis plus increment straight y
δy is approximately equal to dy
and space space space space space space dy space equals space dy over dx cross times dx space equals space 1 fourth straight x to the power of 3 over 4 end exponent dx space equals space fraction numerator 1 over denominator 4 straight x to the power of begin display style 3 over 4 end style end exponent end fraction cross times space dx space equals space fraction numerator 1 over denominator 4 left parenthesis 16 right parenthesis to the power of begin display style 3 over 4 end style end exponent end fraction cross times 1
space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 1 over denominator 4 space cross times 8 end fraction space equals space 1 over 32
therefore space space space space space space 17 to the power of 1 fourth end exponent space equals space 2 plus 1 over 32 space equals space 2.03125
therefore space space space space space space open parentheses 17 over 81 close parentheses to the power of 1 fourth end exponent equals space fraction numerator left parenthesis 17 right parenthesis to the power of begin display style 1 fourth end style end exponent over denominator 3 end fraction space equals space fraction numerator 2.03125 over denominator 3 end fraction space equals space 0.677083 space equals space 0.677