Sponsor Area

Application Of Derivatives

Question
CBSEENMA12035603

Use differentials to approximate fourth root of 80.

Solution
Take space straight y space equals space straight x to the power of 1 fourth end exponent comma space space space straight x space equals space 81 comma space space space space dx space equals space δx space equals negative 1 space space space space so space that space straight x space plus space δx space equals space 80
Now comma space space space straight y space plus space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 fourth end exponent space space space space space space space rightwards double arrow space space space space space space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 fourth end exponent minus straight y space equals space left parenthesis 80 right parenthesis to the power of 1 fourth end exponent minus 3
rightwards double arrow space space space space left parenthesis 80 right parenthesis to the power of 1 fourth end exponent space equals space δy plus 3                                             ...(1)
Now δy is approximately equal to dy
and space dy space equals space dy over dx dx space equals space 1 fourth straight x to the power of negative 3 over 4 end exponent dx space equals space fraction numerator 1 over denominator 4 straight x to the power of begin display style 3 over 4 end style end exponent end fraction dx space equals space fraction numerator 1 over denominator 4 left parenthesis 81 right parenthesis to the power of begin display style 3 over 4 end style end exponent end fraction left parenthesis negative 1 right parenthesis space equals space fraction numerator negative 1 over denominator 4 cross times 27 end fraction space equals space fraction numerator negative 1 over denominator 108 end fraction
therefore space space space space from space left parenthesis 1 right parenthesis comma space space space left parenthesis 80 right parenthesis to the power of 1 fourth end exponent space equals space minus 1 over 108 plus 3 space equals space 323 over 108.