-->

Inverse Trigonometric Functions

Question
CBSEENMA12035691

If space tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y space equals space straight pi over 4 comma space xy less than 1 comma space then space write space the space value space of space straight x plus straight y plus xy.

Solution

Given that tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y space equals straight pi over 4 space and space xy less than 1.
We need to find the value of x+y+xy.
tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y space equals space straight pi over 4
rightwards double arrow space tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus straight y over denominator 1 minus xy end fraction close parentheses space equals space straight pi over 4 space open square brackets because space xy less than 1 close square brackets
rightwards double arrow space tan open square brackets tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus straight y over denominator 1 minus xy end fraction close parentheses close square brackets space equals space tan open parentheses straight pi over 4 close parentheses
rightwards double arrow space space fraction numerator straight x plus straight y over denominator 1 minus xy end fraction equals 1
rightwards double arrow straight x plus straight y space equals space 1 minus xy
rightwards double arrow space straight x plus straight y plus xy equals space space 1

Some More Questions From Inverse Trigonometric Functions Chapter