-->

Application Of Derivatives

Question
CBSEENMA12035535

A wire of length 30 cm is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What could be the length of the two pieces, so that the combined area of the square and the circle is minimum?

Solution
Total length of wire = 30 metre. Let x metres be made into a circle and (30 – x) metres into a square.
therefore space space space radius space of space circle space space equals space fraction numerator straight x over denominator 2 space straight pi end fraction space metres space and space side space of space square space equals space fraction numerator 30 minus straight x over denominator 4 end fraction metres
Let S be the sum of areas of two figures. 
   therefore space space space space straight S space equals space straight pi open parentheses fraction numerator straight x over denominator 2 space straight pi end fraction close parentheses squared space plus space open parentheses fraction numerator 30 minus straight x over denominator 4 end fraction close parentheses squared space equals space fraction numerator straight x squared over denominator 4 straight pi end fraction plus fraction numerator left parenthesis 30 minus straight x right parenthesis squared over denominator 16 end fraction
              dS over dx space equals fraction numerator 2 straight x over denominator 4 straight pi end fraction plus fraction numerator 2 left parenthesis 30 minus straight x right parenthesis thin space left parenthesis negative 1 right parenthesis over denominator 16 end fraction space equals space fraction numerator straight x over denominator 2 straight pi end fraction minus fraction numerator 30 minus straight x over denominator 8 end fraction
dS over dx space equals 0 space space space gives space us space fraction numerator straight x over denominator 2 straight pi end fraction minus fraction numerator 30 minus straight x over denominator 8 end fraction equals 0
therefore space space space space 4 straight x minus 30 space straight pi space plus space straight x space straight pi space equals space 0 space space space space space rightwards double arrow space space space left parenthesis straight pi plus 4 right parenthesis space straight x space equals space 30 space straight pi
therefore space space space space space space space space space space space space space straight x space equals space fraction numerator 30 space straight pi over denominator straight pi space plus 4 end fraction
space space space space space space space space fraction numerator straight d squared straight S over denominator dx squared end fraction space equals space fraction numerator 1 over denominator 2 straight pi end fraction plus 1 over 8
When space straight x space equals space fraction numerator 30 space straight pi over denominator straight pi plus 4 end fraction comma space space space space space fraction numerator straight d squared straight S over denominator dx squared end fraction space equals space fraction numerator 1 over denominator 2 straight pi end fraction plus 1 over 8 greater than 0
therefore space space space space space space straight S space is space minimum space when space straight x space equals fraction numerator 30 space straight pi over denominator straight pi space plus 4 end fraction
therefore space space space space space space the space wire space is space to space be space cut space at space straight a space distance space of space fraction numerator 30 space straight pi over denominator straight pi plus 4 end fraction space meteres space from space one space end. space